Η Alice και ο Bob παίζουν ένα παιχνίδι. Είναι σύμμαχοι, οπότε είτε θα κερδίσουν μαζί είτε θα χάσουν μαζί. Πριν το παιχνίδι ξεκινήσει, έχουν την δυνατότητα να μιλήσουν και να αποφασίσουν ποια στρατηγική θα ακολουθήσουν.
Όταν το παιχνίδι ξεκινήσει, η Alice και ο Bob μπαίνουν σε διαφορετικά ηχομονωτικά δωμάτια – δεν μπορούν να επικοινωνήσουν μεταξύ τους με κανένα τρόπο. Ρίχνουν από ένα νόμισμα και σημειώνουν αν ήρθε κορώνα ή γράμματα( Είναι υποχρεωμένοι να λένε πάντοτε την αλήθεια). Κατόπιν η Alice προσπαθεί να μαντέψει τι έφερε ο Bob’s και το σημειώνει, το ίδιο κάνει και ο Bob σημειώνοντας τι πιστεύει οτι έφερε η Alice.
Αν ο ένας ή και οι δυο έχουν μαντέψει σωστά τι έφερε ο άλλος, τότε κερδίζουν σαν ομάδα. Αν όμως έχουν μαντέψει και οι δυο λάθος, τότε χάνουν και οι δύο.
Ο γρίφος είναι ο εξής: Μπορείτε να σκεφτείτε μια στρατηγική, ώστε η Alice και ο Bob να κερδίζουν πάντοτε;
Η Alice θα μαντεύει ότι ο Bob έφερε το ίδιο αποτέλεσμα με εκείνη, ενώ ο Bob θα μαντεύει ότι η Alice έχει φέρει το αντίθετο αποτέλεσμα από τον ίδιο. Θ.Δ.
ΑπάντησηΔιαγραφήΕύγε, πολύ καλό
ΑπάντησηΔιαγραφή